TargetMol

Nat-20(S)-yne

Product Code:
 
TAR-T35562
Product Group:
 
Inhibitors and Activators
Supplier:
 
TargetMol
Regulatory Status:
 
RUO
Shipping:
 
cool pack
Storage:
 
-20℃
1 / 1

No additional charges, what you see is what you pay! *

CodeSizePrice
TAR-T35562-5mg5mg£850.00
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
TAR-T35562-50mg50mg£1,661.00
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
TAR-T35562-100mg100mg£2,079.00
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
Prices exclude any Taxes / VAT
Stay in control of your spending. These prices have no additional charges, not even shipping!
* Rare exceptions are clearly labelled (only 0.14% of items!).
Multibuy discounts available! Contact us to find what you can save.
This product comes from: United States.
Typical lead time: 10-14 working days.
Contact us for more accurate information.
  • Further Information
  • Documents
  • Show All

Further Information

Bioactivity:
Smoothened (SMO) is a GPCR-like receptor which, with Patched, mediates hedgehog signaling to regulate gene expression through the Gli transcription factors. 20(S)-hydroxy Cholesterol (20(S)-OHC) is an oxysterol which binds SMO and activates hedgehog signaling (EC50 = 3 μM), and this activation is selective for the nat-20(S)-OHC enantiomer. Nat-20(S)-OHC synergizes with the SMO agonist SAG, suggesting an allosteric effect. Nat-20(S)-yne is a form of nat-20(S)-OHC with a terminal alkyne group, which can be used in linking reactions known as click chemistry. Click chemistry involves highly dependable and specific azide-alkyne bioconjugation reactions and can be used to capture or immobilize bioactive molecules. Thus, nat-20(S)-yne has been conjugated with magnetic beads to demonstrate that nat-20(S)-OHC directly binds SMO.
CAS:
1397692-46-4
Formula:
C25H38O2
Molecular Weight:
370.577
Purity:
0.98
SMILES:
C[C@](O)(CCC#C)[C@H]1CC[C@H]2[C@@H]3CC=C4C[C@@H](O)CC[C@]4(C)[C@H]3CC[C@]12C