HPF

TargetMol
Product Code: TAR-T38071
Supplier: TargetMol
CodeSizePrice
TAR-T38071-1mg1mg£1,258.00
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
TAR-T38071-5mg5mg£3,378.00
Special offer! Add £1 to your order to get a TargetMol CCK-8 Kit. Read more here.
Quantity:
Prices exclude any Taxes / VAT

Overview

Regulatory Status: RUO
Shipping:
cool pack
Storage:
-20℃

Images

1 / 1

Further Information

Bioactivity:
The biology of highly reactive oxygen radical species is of great interest in many biomedical research disciplines, including neurodegeneration, aging, cancer, and infectious diseases.[1] There are a number of fluorescent reagents, such as 2,7-dichlorodihydrofluorescein (DCDHF), that can be used to detect free radicals, but they have significant limitations due to their facile oxidation by light and numerous non-radical oxidants such as hydrogen peroxide (H2O2). [2] HPF is a cell-permeable aromatic amino-fluorescein derivative that has little intrinsic fluorescence. [3] It undergoes oxidation only by highly reactive oxygen species (hROS) such as the hydroxyl radical, peroxynitrite, and hROS generated from a peroxidase/H2O2 system. It is inert to hypochlorite ion, nitric oxide, hydrogen peroxide (H2O2), superoxide, and other oxidants. Upon oxidation, HPF is converted to the highly fluorescent molecule fluorescein, with excitation/emission maxima of 490/515 nm, respectively, allowing the simple direct detection of highly reactive biological radicals.
CAS:
359010-69-8
Formula:
C26H16O6
Molecular Weight:
424.4
Purity:
0.98
SMILES:
OC(C=C1)=CC=C1OC2=CC3=C(C=C2)C4(C(C=CC=C5)=C5C(O4)=O)C6=CC=C(O)C=C6O3

References

Hempel, S.L., Buettner, G.R., O'Malley, Y.Q., et al. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: Comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Biology & Medicine 27(1), 146-159 (1999). Mat?s, J.M., P?rez-G?mez, C., and Nu?ez de Castro, I. Antioxidant enzymes and human diseases. Clinical Biochemistry 32(8), 595-603 (1999). Setsukinai, K.i., Urano, Y., Kakinuma, K., et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 278(5), 3170-3175 (2003).