Anti-Human CD20 (Obinutuzumab) - Fc Muted™

Leinco Technologies
Product Code: LEI-LT912
Product Group: Primary Antibodies
CodeSizePrice
LEI-LT912-500ug500 ug£408.00
Quantity:
Prices exclude any Taxes / VAT

Overview

Host Type: Human
Antibody Isotype: Human IgG1κ
Antibody Clonality: Monoclonal
Antibody Clone: GA101
Regulatory Status: RUO
Target Species: Human
Applications:
  • Enzyme-Linked Immunosorbent Assay (ELISA)
  • Flow Cytometry
  • Functional Study
  • Immunoprecipitation (IP)
  • Western Blot (WB)
Shipping:
2 - 8°C Wet Ice
Storage:
Functional grade biosimilar antibodies may be stored sterile as received at 2-8°C for up to one month. For longer term storage aseptically aliquot in working volumes without diluting and store at -80°C.?Avoid Repeated Freeze Thaw Cycles.

Further Information

Antigen Distribution:
CD20 is a general B cell marker expressed by the majority of normal B cells in all stages of their development as well as by most B cell malignancies.
Concentration:
? 5.0 mg/ml
Conjugate/Tag/Label:
Purified No Carrier Protein
Format:
This biosimilar antibody is aseptically packaged and formulated in 0.01 M phosphate buffered saline (150 mM NaCl) PBS pH 7.2 - 7.4 with no carrier protein, potassium, calcium or preservatives added. Due to inherent biochemical properties of antibodies, certain products may be prone to precipitation over time. Precipitation may be removed by aseptic centrifugation and/or filtration.
Formulation:
This biosimilar antibody is aseptically packaged and formulated in 0.01 M phosphate buffered saline (150 mM NaCl) PBS pH 7.2 - 7.4 with no carrier protein, potassium, calcium or preservatives added. Due to inherent biochemical properties of antibodies, certain products may be prone to precipitation over time. Precipitation may be removed by aseptic centrifugation and/or filtration.
Immunogen:
Human lymphoblastoid cell line SB.
Long Description:
CD20 is a nonglycosylated 33-37 kDa phosphoprotein member of the MS4A family which is widely expressed on normal B cell surfaces during all stages of development as well as by most B cell malignancies1,2. The biological role of CD20 remains poorly understood; however, it is thought to be involved in calcium ion influx. CD20 has no natural ligand and is not immediately internalized upon antibody binding. Thus, mAbs directed against CD20 depend on the recruitment of a host response. Anti-CD20 mAbs bind to the 44 amino acid extracellular portion. Obinutuzumab (GA101) is a new generation, type II, anti-CD20 antibody2. Obinutuzumab was humanized by grafting the complementarity-determining sequences of murine IgG1-κ antibody B-Ly1 onto human VH and VL acceptor frameworks3. The Fc segment was glycoengineered to attach bisected, complex, nonfucosylated oligosaccharides to asparagine 297, leading to increased affinity to FcgRIII. Obinutuzumab causes homotypic adhesion4,5,6, induces direct cell death via largely caspase-independent mechanisms4,6,7,8,9, does not localize into lipid rafts4,10,11, displays half-maximal CD20 binding at saturating conditions7, and displays minimal complement dependent cytotoxicity7. Compared to rituximab, obinutuzumab recognizes a distinct but overlapping CD20 epitope, in a different orientation that results in increased pro-apoptotic potential12,13,14. A modified elbow-hinge residue, characterized by a leucine to valine mutation at Kabat position 11, is key to superior phosphatidylserine exposure and cell death relative to rituximab3.
NCBI Gene:
931
Purity:
?95% monomer by analytical SEC, >95% by SDS Page
Target:
CD20

References

1. Middleton O, Wheadon H, Michie AM. Classical Complement Pathway. In MJH Ratcliffe (Ed.), Reference Module in Biomedical Sciences Encyclopedia of Immunobiology Volume 2 (pp. 318-324). Elsevier. 2016. 2. Freeman CL, Sehn LH. Br J Haematol. 182(1):29-45. 2018. 3. M?ssner E, Br?nker P, Moser S, et al. Blood. 115(22):4393-4402. 2010. 4. Chan HT, Hughes D, French RR, et al. Cancer Res. 63(17):5480-5489. 2003. 5. Ivanov A, Beers SA, Walshe CA, et al. J Clin Invest. 119(8):2143-2159. 2009. 6. Alduaij W, Ivanov A, Honeychurch J, et al. Blood. 117(17):4519-4529. 2011. 7. Herter S, Herting F, Mundigl O, et al. Mol Cancer Ther. 12(10):2031-2042. 2013. 8. Honeychurch J, Alduaij W, Azizyan M, et al. Blood. 119(15):3523-3533. 2012. 9. Golay J, Zaffaroni L, Vaccari T, et al. Blood. 95(12):3900-3908. 2000. 10. Cragg MS, Morgan SM, Chan HT, et al. Blood. 101(3):1045-1052. 2003. 11. Cragg MS, Glennie MJ. Blood. 103(7):2738-2743. 2004. 12. Niederfellner G, Lammens A, Mundigl O, et al. Blood. 118(2):358-367. 2011. 13. Klein C, Lammens A, Sch?fer W, et al. MAbs. 5(1):22-33. 2013. 14. K?nitzer JD, Sieron A, Wacker A, Enenkel B. PLoS One. 10(12):e0145633. 2015. 15. Terszowski G, Klein C, Stern M. J Immunol. 192(12):5618-5624. 2014. 16. Bologna L, Gotti E, Manganini M, et al. J Immunol. 186(6):3762-3769. 2011. 17. Ysebaert L, Lapr?votte E, Klein C, Quillet-Mary A. Blood Cancer J. 5(11):e367. 2015. 18. Cartron G, Hourcade-Potelleret F, Morschhauser F, et al. Haematologica. 101(2):226-234. 2016.